2019 AMC 12B Problem 12
Right triangle with right angle at is constructed outwards on the hypotenuse of isosceles right triangle with leg length , as shown, so that the two triangles have equal perimeters. What is ?
![[asy] /* Geogebra to Asymptote conversion, documentation at artofproblemsolving.com/Wiki go to User:Azjps/geogebra */ import graph; size(8.016233639805293cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ real xmin = -4.001920114613276, xmax = 4.014313525192017, ymin = -2.552570341575814, ymax = 5.6249093771911145; /* image dimensions */ draw((-1.6742337260757447,-1.)--(-1.6742337260757445,-0.6742337260757447)--(-2.,-0.6742337260757447)--(-2.,-1.)--cycle, linewidth(2.)); draw((-1.7696484586262846,2.7696484586262846)--(-1.5392969172525692,3.)--(-1.7696484586262846,3.2303515413737154)--(-2.,3.)--cycle, linewidth(2.)); /* draw figures */ draw((-2.,3.)--(-2.,-1.), linewidth(2.)); draw((-2.,-1.)--(2.,-1.), linewidth(2.)); draw((2.,-1.)--(-2.,3.), linewidth(2.)); draw((-0.6404058554606791,4.3595941445393205)--(-2.,3.), linewidth(2.)); draw((-0.6404058554606791,4.3595941445393205)--(2.,-1.), linewidth(2.)); label("$D$",(-0.9382446143428628,4.887784444795223),SE*labelscalefactor,fontsize(14)); label("$A$",(1.9411496528285788,-1.0783204767840298),SE*labelscalefactor,fontsize(14)); label("$B$",(-2.5046350956841272,-0.9861798602345433),SE*labelscalefactor,fontsize(14)); label("$C$",(-2.5737405580962416,3.5747806589650395),SE*labelscalefactor,fontsize(14)); label("$1$",(-2.665881174645728,1.2712652452278765),SE*labelscalefactor,fontsize(14)); label("$1$",(-0.3393306067712029,-1.3547423264324894),SE*labelscalefactor,fontsize(14)); /* dots and labels */ dot((-2.,3.),linewidth(4.pt) + dotstyle); dot((-2.,-1.),linewidth(4.pt) + dotstyle); dot((2.,-1.),linewidth(4.pt) + dotstyle); dot((-0.6404058554606791,4.3595941445393205),linewidth(4.pt) + dotstyle); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle); /* end of picture */ [/asy]](https://latex.artofproblemsolving.com/c/d/5/cd54aedb94e876573c078d8b61aba6bbbeb68b71.png)
Full credit goes to MAA for authoring these problems. These problems were taken on the AOPS website.
Show/Hide Problem Tags
Problem Tags: Geometry
Want to contribute problems and receive full credit? Click here to add your problem!
Please report any issues to us in our Discord server
Go to previous contest problem (SHIFT + Left Arrow) Go to next contest problem (SHIFT + Right Arrow)